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3.0 REAL DATA ANALYSIS - 
The ranging measurements from the two runs (RELAY II 

Revs. 4250 and 4251) were processed by the TRW ESPOD orbit 
determination tracking program. This program performs a least 
square fit to the accurately known orbit and using a covariance 
matrix analysis to measure the errors as necessary, in the case 
of this experiment it was the station location. Refer to 
Appendix A for the detailed analysis. In actuality, an 
orbit was determined by using the range data and was then 
compared with the orbit supplied. The first run (Case 1) 
provided an overall error in station location of 2500 feet in 
East-West direction and 1300 feet in North-South. A measure 
of the actual total range uncertainty was also determined from 
the results. The mean value of range uncertainty (range 
measurement error) was found to be 1194 feet, however, the RMS 
value was 1761 feet. 

The angle data taken during the two RELAY passes was 
not useful for reasons which are not known. The error analysis 
given in the following section shows that a considerable 
improvement in the station location measurement can be achieved 
if accurate azimuth and elevation angles (X and Y values in 
the case of Mojave) be measured along with the range data. 
The results of Case 1 were based on range measurements only 
and was workable because a very accurate estimate of the'orbit 
was available. Meaningful results however could not be obtained 
from Case 2. A high sensitivity of the orbital parameters 
differential correction to the starting vector was apparent 
for the range only consideration for Case 2. This made it 
impossible to get an accurate solution. 

3 



4.0 ERROR ANALYSIS (See Appendix A) 

The theoretical results were based on two cases that 
correspond to the actual data which was taken. The first case 
was 18.5 minutes of tracking with one range measurement every 
second. The second case was 12.0 minutes at the same data 
rate. In both cases range measurement uncertainties of 200, 
500 and 1000 feet were assumed. It was also assumed that the 
uncertainty in the orbit parameters was much less than the 
station location uncertainties. The results are summarized 
in Figures 2, 3, 4 and 5. The uncertainties were expressed 
in units of distance in an up-meridian-parallel coordinate 
system. 

For Case 1, the total vector uncertainty of station 
location which is the RMS of Figures 2, 3 and 4 for a range 
tracking sigma of 1000 feet is 1500 feet. For Case 2 however, 
it would require a range sigma of 150 feet for an uncertainty 
of 1500 feet. These results are summarized in Figure 5. 
The difference between Case 1 and 2 are seen to be an order 
of magnitude and this fact is borne out by considering Figure 6 
where tracking uncertainty is plotted as a function of tracking 
time for Case 1 conditions and a range sigma of 500 feet. 
It is evident that station keeping ability is a very sensitive 
function of tracking time if a single pass is used. 

This phenomenom is virtually independent of the number 
of points taken in the interval and it reflects the fact that 
an entire orbit must be reconstructed from a pass which covers 
only 10% of the central angle while tracking with only range 
data. In order to demonstrate this timing effect, a run was 
made with tracking from the station for using data from both 
passes. In other words, six minutes of total tracking means 
three minutes of the first pass (Case 1) and three minutes of 
the second (Case 2). The results have been plotted in Figure 7 
and show a decrease in station uncertainty of almost 1OO:l 
in some cases. 
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Finally, an analysis was made using azimuth and elevation 
data in addition to range. The results indicate a spectacular 
improvement in the possible accuracies. The run was made with 
range sigma equal to 500 feet and the angle noise equal to 18 
seconds of arc. The results (in feet): 

aNS aEW aALT %AD 
Case 1 18.6 17.2 25.5 36.0 
Case 2 15.7 14.3 21.9 30.5 

In addition to the improvement in accuracy, a comparison of the 
12 and 18 minute cases indicate that the sensitivity to tracking 
time has been significantly reduced. (For the range only case 
the ratio between Case 1 and Case 2 of aRAD is 6.6 while the 
angle data the ratio is .85). Case 2 is now slightly superior 
because the satellite spends proportionately more time higher 
in the sky. 

5.0 CONCLUSIONS 

The results of the actual data and error analysis lead 
to the conclusion that a station keeping system is quite feasi- 
ble subject to the following recommendations and constraints: 

a) Range, Azimuth and Elevation data be used. 

b) The satellite orbit be known to great accuracy. 
Several unsuccessful runs have shown that the 
amount of data used in this study is not sufficient 
to generate orbital elements to any degree of 
accuracy. However, if several passes were avail- 
able they could be used to update the orbital 
parameters before a station keeping run is made. 

cl It is tacitly assumed that the system will not 
have any biases of the same order as the random 
noise components that were observed on the two 



measured passes. This is often not easy to achieve 
in field equipment and it must be remembered that 
the results will be degraded in proportion to the 
biases present. 
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APPENDIX A 

ANALYSIS OF TRACKING ACCURACY 

1.0 INTRODUCTION 

The following introductory paragraphs are primarily 

a general review of the principles involved in the 

analysis. Symbol definitions are underlined. 

Let q represent a random variable, which is defined 

as an ensemble of real-valued results of a repeatable 

experiment, or its sample value. In n dimensions q is 

an n-tuple (~1, q2 . . . . . . vn) of real numbers qi 

which, relative to a fixed basis, may also be expressed 

as the column vector: 
I- - 

Associated with q is a distribution (or cumulative dis- 

tribution) function F(x) which is related to the proba- 

bility of events defined in terms of the variable such 

that 

Pr(ql< x1 . . . . . q,<x,) - F(x1 . . . . xn) - - 
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For simplicity in notation, consider only the two 

dimensional case with continuous and independent random 

variables ~1 and q2. Then there exists a frequency 

function f(x1, x2) such that 

f(X1’ x2) = F(xl, x2) 

and F(xl, x2) -/X&ljx2dt2 f(t1, t2). 
*oQ --oo 

The marginal frequency function of ~1, which is defined 

as 

Jwq1 LX11 - Wql L x1’ 7j2L 00 ) = Nxl, -1. 
04 

is fl(X1) - 
-CL 

f(X1' x2> dx2 

The conditional frequency function which is defined as 

the probability of two events occurring simultaneously 

within specified intervals, of '11 is 

I 

f(x1, x2) 

f(xl x2) - f2(X2) 

The marginal and conditional frequency functions for q2 

are similarly defined. 
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The mathematical expectation E of a function g of the 

variables is given by: 
03 

Eg(ql, q2) = 
JJ 

I&+ x2) f(xl, x2) dxl a2 

-09 
Let a represent the moment of the frequency function, 

which is defined as the expectation of powers of the 

random variables. That is, 

From the above standard definitions and routine theory, 

it is readily verified that 

alo - Etll = Pl 

where ~1 is the mean of the distribution relative to ~1. 

Similarly, p2 is the mean relative to q2. Central 

moments are the expectations of powers of (q-u). The 

second central moments E(wd2 are the variances o 2 

(a is the standard deviation). 

In n dimension, the above definitions are obvious 

extensions of the two dimensional case. The second 

central moments become: 

aij = E('li - Pi)(Vj - pj) i, j - 1, 2, . . . n. 

and Eqi - pi. 
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Note that all = o12, 2 a22 = a2 , etc. The symmetric 

matrix 

. 

. 

. 

is the covariance matrix. A diagonal element is simply 

the variance of qi. A non-diagonal element is the 

covariance of qi and q., J which are the cross products 

of deviations. C is non-negative definite and the rank 

of the matrix determines the character of the distribution. 

In general, if A is a matrix with random elements, then 

EA = (Ea,,). In vector/matrix notation, 

L 

= E (q-d(q-I&” 

Where the prime denotes the transpose matrix. 

If C is multiplied from the left and from the right by 

the diagonal matrix of inverse standard deviations, 

the resultant symmetric matrix is the correlation matrix 

of 'li ' l l l 'In: 
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The elements of the correlation matrix are the correlation 

coefficients, which express the extent of the relation 

between the corresponding random variable qi and qj. 

If Pij is zero, then vi and '17. are independent. If J 
~~$0, the variables are positively related and if 

p.f’o, =J they are negatively related. 

2.0 THE LEAST-SQUARES METHOD 

2.1 Unweighted Least-Squares 

The variable range R is a function of the random trajectory 

state variable X = (x, y, z). As a column vector, 

X 

X-Y 
0 Z 

Here, x, Y, and z represent real values in the standard 

orthogonal coordinate system. (It should be noted 

that in the following general analysis X is not 

necessarily restricted to this designation nor to only 

three components. For example, %, ;f, and i,'could be 

included had range rate data been utilized). 
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Range is also a function f of X0, an initial value of 

the state vector, and 6X, a deviation from X0: 

R= f(Xo+bX). 

Then, bf 6R = bx F-=XA6X, 
0 

where A is the matrix XY z 
[ 1 

since here R - (x2 + y 2 
KTiR’ 

+ ,2)1/2. 

(In vector notation bgrn = &3XA + ?I, where n is noise, 

which is considered later, the subscripts "m" denoting 

measured, and "A" actual). 

In matrix notation, the sum S of the squares of the 

residuals is: 

S - (bR - AbX)'(6R-AbX) 

where the prime again denotes the matrix transpose. 

The least-squares method requires that a value of 6X, 

say ~$2, be found such that S(&) is a minimum. 

Since (6R - A6X)' - 6R' - (AbX)', then 

dS = dpR'GR - 6R'A6X - (A~X)'~R+(A~X)'(ACSX)] 

By differentiation and equating dS to zero to solve for 

minimum S, it can be shown by several methods that the 

normal equation is 

6.2 * (A'A)-l A'6R, 

which is the minimum variance for an unweighted sum 

of squares. 
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2.2 Weighted Least-Squares 

The only source of error is herein restricted to zero 

mean random noise. In this case, 

6R = A6X+n 

and C6R = CA6X+Cn 

where C is a square matrix of order n X n. Let 

C'C - w 

where W is the noise weighting matrix. Note that W 

is symmetric and also non-negative definite. 

Let 

then 

6R* = C6R 
A* = CA 
n* - Cn 

bR* = A*GX+n*. 

Consider the least squares estimate of 6X for the new 

regression equation: 

6X - (AVA+A*QjR” 

- (A'C'CA)-1A'C'C6R 

Then c5x - (A'WA)'lA'WdR, 

which is the weighted least squares estimate corresponding 

tothe original regression equation. Ordinarily, the 

matrix C can be selected at the d+scretion of the analyst 

to take into account the various units used in the 

observations, or to reflect prior knowledge of the 

variance of the noise or even noise correlations. 
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2.3 Minimum Variance 

The linear unbiased minimum variance estimate of the 

differential correction will be shown to be the weighted 

least squares estimate, where W is the inverse of the 

covariance matrix of the noise. By definition, an 

unbiased estimate is an estimate with a mean (or 

Expectation) equal to the parameter being estimated. 

Thus, it is required that 

Ed? - 6X 

An estimate is called minimum variance if any other 

estimate has a larger covariance matrix (in the sense 

of positive definite). 

Let a linear unbiased estimate of the deviation of 

the state vector be bXE. Then the uncertainty in position 

is 6X E - bxA' where 6X A represents the actual vector. 

Let bxE = BdRA = B(A6XA + n) = BAdXA + Bn 

Then, E(6XE) = bXA - BAdXA 

from the unbiased requirement and since E(n) = 0 from 

the zero mean noise assumption. So, 

dxE - bXA 7 bXE - BAdXA = Bn 

E[(6XE-6XA)(c5XE-bXA)'] - BE(nn') B' 

= BW-'B' 

where W -1 is the covariance matrix of the noise. 
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Suppose the first estimate B. - (A'WA)'lA'W. 

Then, 6xE - (A'wA)TS~V~R~ 

= (A1wA)'l~~w (A6XA+n) 

= bXA + (AtWA)'lA'Wn 

and, E(6XE) = dXA 

Therefore, BohRA = dXE is an unbiased estimate or the 

weighted least squares estimate is unbiased and has a 

covariance matrix: 

c- Bow-'Bo' 

- (A'WA)-lA'WW-lWA(A'WA)-l 

= (A'WA)-1 

consider any other unbiased estimate 6%. 

by= B6R = (B. + Bl)(A6X+n) 

It can be shown that the covariance matrix of the new 

estimate is larger than C. Therefore, bXE = (A'WA)-lA'WdRA 

is a minimum variance unbiased linear estimate which is 

the weighted least squares estimate with W equal to the 

inverse of the noise covariance matrix. 

A'WA P s- 
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3.0 COMBINATION OF TWO LEAST-SQUARES ESTIMATES 

Consider two sets of data obtained from the same trajectory. 

For convenience, the first set can be considered as 

taken between times 1 and 2, and the second set between 

times 2 and 3. The residuals (before the fit) are 

given by 

t5R 12 m Al2 bXA + n12 

and 6R23 m A23 bXA + n 23 

. . 
where bR1' = the vector of residuals resulting from data 

taken from time i to time j (=RAij - RRij) 

A mdR ij ij [ 1 dX 

bxA - the vector deviation of the conditions 

at epoch of the actual trajectory from the 

conditions at epoch of the reference trajectory 

(- XA o xR> 
ij . . 

n - the vector of random noise on RAIJ 

The two least squares estimates are given by 

and 
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If the residuals were combined into one vector; the 

least-squares estimate would be 

=L 
13 = (A13i w13~13 -' 

I I 
(A13i w13 6R13 

where 

If 

Then bXE 13 can be reduced to: 
I-- . 

13 m (A12)'w12A12 + (A23)' W33A23 L 
-A 

dxE 

r- 
(A12j w12A12 6XE12 + (A23; W23A23 6X 23 E' 1 - 

This is the equation for combining two least-squares 

estimates under the above assumption about W 13 . 

4.0 UPDATING A LEAST-SQUARES ESTIMATE _-- 
The trajectory state vector X(t) can be thought of as 

a function of its value at any specified time and the 

time t. In particular 

X(t) - fl [ X$1, t 1 - f2 L: x(t& t 1 
The functions fl and f2 describe the trajectory with 

epoch at tl and t2, respectively. 
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Least squares estimates of the state vector at tl and 

at t2 can be made from the same data. With epoch at tl 

bR - Al dXAl + n 

and 

where 

dXEl = 'A; WA,)-1A; W 6R 

Ai - bR 
m-q-J-- 

dXEi - estimate of dXA(ti), 

W ith epoch at t2 

6R = A2 dXA2 + n 

and --I 

oxE2 = <A; WA21 A;W bR 

Now consider the relationship between Al and AZ. 

Therefore 

or 

since 

Finally 

"E2 
-1 

W1 WA1) A;W dR 

QX2 
*'E2 - ax, dXEl 

which is the equation for updating a least-squares estimate 

from epoch 1 to epoch 2. 
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Next consider the error in the two estimates. Clearly 
ax2 

"A2 - K dXAl 

Therefore 

"E2 
ax2 ax2 bX2 

- "'A2 - ax, "El - ax, dXAl = 37 ("El 4XA1) 

That is, the error is updated in the same manner as the 

estimate. Therefore, 

ax2 z2 = - 
ax1 3 

where 'i = E (bXEi 

NASA-Langley, 19% CR-429 

- bXAi)(dXEi - bXAi)’ 
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